
Anales Pft,NEL'81/12 JAHO
Sociedad Argentina de informática
e Investigación Operativa. Buenos /-'.ires, 1981

A RHATIONAL DJHA BASE MAí~AGEMENT SYSTEM

DATA S.A.
Bdo. de 1 rigoyen 560
Buenos Aires- Argentina

RESUMEN

Cowo resultado del proyecto "A Relatj_ Uata Basf.:J Systemit D

se construyó un programa llamado MINI DBMSl. E<?Jte programa~ ·
escrito en el lenguage de :programación PASCAL (UCSil F'ASCAL) ~
simula la actividad de un aarr,inistrador de oase de datosg L.Jl
modelo de datos utilizado fue el relacional y el programa fue
implementado en una Minicom:putadora~

El objetivo principal de proyecto fue la implementación de
un sistema que simule la actividad desarrollada en un DBMS,
teniendo se en cuenta fundamentalmente las distintas acti v~_dades
que se desarrollan en la generación~ mantenindento e inter­
acción con una base de datos a través de un DBMS. Se tuvo en
cuenta q_ue los usuarios serian estudiantes un curso de base
de datos y que tendrian que interactuar con sistema y obtener
como resultado el conocimiento conceptual del funcionaJniento
de un D::ir,~;s. Se asumió que los estudiantes o usuarios del sj_s­
tema debian conocer el modelo relacional y las operaciones
relacionales correspondientes.

Las OlJeraciones del .DBKS que se ü1plementaron son: aquellas
que realiza. el administrador de la de datos~ (creacic5n de
las relaciones y destrucci de las smas) las opera­
cj_,;nes rmra el mantenimiento de re1 j_ones% (al-tas de tnrlas ~

bajas y cambias) y por último P las o_peraciones relacionales,
proyección (projection), restricción (restriction), selecci6n
(selection) ~ IJrodu.cto cartesiano (cross product) y acopla=
miento (join) ~

:E1 programa fue implementado en una minicOTI1ljutadora 9 ex] lo~

tando las características interactivas del lenguage y del
hardware disponible (CHI' 1 unidad central y unidad de diskette).

En el reporte correspondiente a este proyecto se cubren los
·siguientes runtos ~

Estructuras de datos utilizadas en el pro-
grama.
Explicación conce}Jtual del funcionamiento
de los módulos que realizan las actividades
principales del DBl'ilS.
Conclución.

Se quiere dejar claro que el objetivo de este sistema es edu­
cativo y no para el uso en aplicaciones comerciales. Esto se
manií'iesta en la implementación de la mayoría de las operaciones
de un DBMS ruesto que se considera una cantidad reducida de
tuplas por relación en la base de datos.

e - 116

l. INTRODUCTION

The result of the project "A Relational Data Base System"

is a program called Mini DBMSl. This program has as its main

objective the implementation of a dat·a base management system

in a minicomputer environment for educational purposes rather

than applications-oriented software. The relational data model

was the one used in this project.

The educational objective of the systern concerns the

exercise of data base administrator,relations maintenance, and

relational operations activities utilizing a srnall number

of relations and tuples. The data base administrator

operations are creation and deletion of relations. The

relations maintenance type of operations that can be performed

are of common type to a data base. They are insertion of

tuples or records, deletion, and update. The relational

operations that can be exercised are projection, selection,

restriction, cross product, and join. This assumes that the

user of the system should have knowledge about the relational

model and operations.

This project was divided into phases. Phase one concerned

relational operations over one relation, and phase two

involved relational operations combining two relations .. The

host language used in this implementation was UCSD PASCAL

e - 117

version I. 4. This language allows the possibility of having

machine-independent progrillns, which means that the programs

developed in this language can run in a variety of

minicomputers and microcomputers. The machines used at the

moment are a Terak minicomputer and a PDPll/10. The project

direction was under Prof. D. Dearholt, and the students

involved were Ying-Ying Peng in phase one, and Ricardo

Giovannone in phases one and two. This paper covers the work

done in phases one and two of the project. The paper will

cover explanations of program modules and strategies used.

2. DATA BASE ~ffiNAGE}~NT SYSTEM STRUCTURE

The Mini DBMSl is a set of program modules (procedures and

functions) that make possible the handling of relations to and

from the diskette. Relations are stored in the diskette and

fetched to memo~y for further processing using basic procedures

or functions. When the relational data are brought to

memory, these are stored temporarily in either of two data

structures (arrays) that have the same structure as the file

records holding the relations in the diskette. These data

structures serve as a working area for most of the procedures

or functions that perform basic activities like retrieving,

e - 118

CRT

printing, or recording. These arrays are also used in all the

specialized procedures that perform the relational operations.

They are al so u sed by the procedures tha-t do insertíon,

updating. and deletion of tuples in relations already created

in the data base.

Figure 1 shows this conceptual view of the Mini DBMSl

activity. Figure 2 shows all the commands available in this

Mini DBMSl to exersice all the operations.

MAIN MEMORY

*

*

*

1 < ====== > -¡¡,·

D
B
M

S

p

*
i<->i Workspace *l *

7r

-------!---------
*

________ v ________ __ *
*

DISKETTE

!Relation File
1---------------' ' '

XX*******'*

r
o
g
r
a
m

!<->! Workspace #2 * !Relation File
1 1
' '

1 Keyboard 1
!---------------!

1<

* * M
o
d
u
1

ji.• < ==== > ! --------------

*
*

*

e
S

*
! e-->! Relations Array! *

----------------- *

!<-->!Data Definition!
!Array #1

*

----------------- "ir

!<-->!Data Definition!
!Array #2

*

----------------- *
******~**************************

!Relations File
¡ _______________ ¡

' '

!Data Definition!
!---------------!
!Data Definition!
1---------------1 ' '

~****************

Figure 1. Conceptual view of the data base rnanagement activity.

e - 119

To start the execution of the system Type: X , then a question like this will aooear,
What file?, and you Type: DBMSl

----o M)odify Data Base

Q)uery Data Base
r-',--~

O)ne Relation Query
T)wo Relations Query
M)od ify Data Base
E)xit to Termínate

1.,:...------------o M)od i fy a
-------------"! C)reate a Relation

o

P)rojection
S)el ection
R)estriction
L)ist Tupl es
D)a ta Defi nition
or
T)wo Relations Qperations

G G)o to Previous Level
f)xit to Termínate Session

T

J)oin
C)ross Product
or
O)ne Relation Operation
G)o to Level 1
E)xit to Termínate Session

E

---Q

e - 120

D)elete a Relation
Q)uery Data Base
E)xit to Termínate

I)nsert
D)elete
U) pda te
or.
G)o to Previous Level
Q)uery Data Base
E)xit to Tenninate Session

E·

Fi¡•ure 2. Comrw.nds
structure available in the
Hini DJ3HS1 svstem.

The following section will describe the different type

of data structures that are generated and used by this Mini

DBMSl.

2.1. Relation File

This file is composed of records of characters (maximum 50

characters). Each record holds one tuple of the relation. One

of the constraints in using this structure is that not all the

relations have tuples 50 characters long, so some space is

wasted. The number of tuples that a relation can have is not a

restriction. However, there is a restriction in terms of the

working space created by the program in the main memory. The

working area holds a maximum of 10 tuples per relation. Of

course this can be changed just by changing the dimension of

the working area, but one should have a memory bigger than 56K

bytes.

2.2. Data Definition File

The data stored in this file refers to the different

qualifications related to each attribute in a particular

relation. Toe file name is associated to the relation name in

e - 121

order to fetch it when needed, The information about each

attribute is stored in a record. There is one record per

attribute. The information concerns domain of the

attribute, length, starting position in the tuple, designation

of key or common attribute, and value ranges. There is one Data

Definition file for each relation created.

2.3. Relations File

The purpose of this file is to store information about the

current relations in the data base. There is a record for each

relation. This record is formed by the fields relation name,

number of tuples, and number of attributes.

The file structures presented are the only ones at the moment

used by the program modules. The relation file and the data

definition files are used for error checking purposes and to

get parameters of information used in all the procedures and

functions.

The relation file serves only as a means to store the

relational data to be managed by the system.

3. PROGRAM MODULES

This section will refer to the different procedures or

· e - 122

functions used to execute data base administartor operations,

relational operations and insertion, deletion, and updating

of tuples.

3.1. Structure of Data Base

This command is produced automatically each time the user

starts a session. The purpose of t~is procedure is to show the

whole structure of the data base. This means that all the

r~lation names currently in the data base and the

corresponding data definition for each one will be shown.

Figure 3 shows in a conceptual diagram the step followed by the

procedure to accomplish this part.

3.2. Data Base Administrator Operations

3.2.1. Creation of a New Relation

This command allows the user to create a new relation for

the data base. This task is always performed by the data

administrator. At the moment this command has a security pass

in order to prohibit access to unauthorized users. Figure 4

describes the steps involved in this command.

e - 123

3.2.2. Deletion of a Relation

The delete command delete completely a relation from the

data base. A special password is required of the user to

perform this activity, which again should be performed by the

data base administrator. The delete command appears under the

M)odify Data Base command. This command erases the data file

for the relation, the record from the relations file and the

corresponding data definition file. Figure 5 describes this

command.

3.3. Relational Operations

Relational operations are divided into one relation

operations and two relations operations. The one relation

operations involve projection, selection, and restriction. The

two relations operations are cross product and join.

3.3.1. Projectioti

This relational operation is performed by following several

steps. First, the relation desired is brought to main memory

e - 124

and loaded to one of the working areas. The data in this

working area is used as row data for a procedure that does the

projection. The projection procedure selects the specified

attribute in each tuple. These attribute values' are transferred

to the second working area. Before the transfer is done, a

redundancy checking procedure over the correspondent attribute

value is carried out, if the attribute value already exists in

the workspace #2 then no transfer is done. Finally, all the

attribute values selected are in the workspace #2. The user

has the option of having this resulting projection sorted or

not. This implementation of the projection operation is limited

to the projection of one attribute values at a time. Figure 6

shows the steps for this operation.

3.3.2. Selection

The first part of this command is carried out like a

projection. The relation is loaded into the first working area

and then these data are taken to do the relational operation

under the desired options and to pass the result to workspace

#2 where the results of every operation are always stored.

Figure 7 points out the different steps involved in this

operation.

e - 125

3.3.3. Restriction

This relational operation involves one attribute name and a

corresponding domain value related by a relatiohal operator. The

first part of this operation is performed the same as the

previous ones and the result is also placed in workspace # 2,

and then printed out. Figure 8 represents the steps followed in

this corrunand.

e - 126

LOAD Relations File
WHILE not end of Helations File DO
Begin

PHINT Helation name
LOAD Relational Data Definition
PRINT Data Definition

¿nd

Figure 3. Procedure that displays the· ~ata base structure.

LOA!) helations File
:F'RINT Relation Names in the Data Base
ASK for password to create Helations
IF correct password TREN
Begin

ASK for the name for the new c~elation

IF New Helation Name non-redundant TREN
Begin

Data Definition construction
Insert first tuples for the new Relation

.:;nd
ELS~ access denied

:B'igure 4. Steps invol ved in the creation of a new relation.

ASK for appropiate password
IF password correct TREN
Begin

ASK for relation name to be deleted
PUHG-E corresrJOnding. ;:elation File
IUHGt:: corresponding Data Definition Pile
DC:IJ~T.G relation name from :telations 8'ile

:~nd

BLSE delete denied

Figure 5. Delete relation steps.

e - 12;¡

LOAD Desired Relation into Workspace 1
ASK which attribute is to be projected
WHILE not end of Relation DO
Begin

COPY attribute value selected
IF attribute value copied exista ~n workspace

2 then NO TRANSF~R
.c;LSB TRANSF.r.;R value to Workapace 2

.t;nd
IF sorting option true TREN
Begin

SORT contenta of Workspace 2
PRINT Workapace ~. 2 content

ind

Wigure 6. Steps involved in projection operation.

LOAD nesired relation into Workspace l
LOAD Data Definition into Data Def. array 1
ASK for first attribute name, relational operator,

and second attribute name
WHILE·not end of relation DO
Begin

IF current
Begin

THANS.B'.c;R
~ .. nd

.::.nd

tuple matches desired qualification TREN

current tuple to Workspace 2

l:'RINT 'Norkspace 2 content

Figure 'f. Proceaure followed to pez:form selection operation.

e - 12s

LOAD Desired relation into Workspace 1
LOAD Data Definition into Data Def. array 1
ASK for first attribute name, relational aperator,

and attribute value
WHILE not end of re1ation DO
Begin

IF current tuple matches desired qua1ification TREN
Begin /

TRANSFJER current tup1e to Workspace 2
::B.'nd

End
PRINT Workspace 2 content

Figure 8. Procedure followed to perform restriction operation.

ASK for first Relation name
LOAD Relation into Workspace 1
LOAD Data Definition into Data Def. array 1
PRINT Data Definition for this re1ation
ASK for second Belation name
IJOAD Relatiori. into Workspace 2
LOAD Data Definition into Data Defe array 2
PRINT Data Definition for this relation
WHILZ not end of First H.elation DO
Begin

WHILE not end of Second }3_elation DO
Begin
CONCATENAT~ to tup1e from.first Re1ation tuple

from second He1ation
I)RINT resu1t of concatenation

}]nd
.:::nd

Figure 9. Croes product steps.

e - 129

3.3.4. Cross Product

This relational operation involves hJO relations from the

Data Base. The tuples from one relation are related to a second

relation. Each tuple from the first relation is related to all

the tuples in the second relation, in this way generating new

tuples that are the concatenation of tuples from the first and

second relation. Figure 9 shows the steps followed in this

command.

3.3.5. Join

The relational operation Join also involves two relations

from the Data Base. The tuples from the first relation are'

related to the second relation tuples by a selection type of

relational operation. This operation is done taking the

attributes values from one tuple (from Relation 1) and compared

with the other tuple (from Relation 2). Whenever there is a

success in the comparison, based on the operator chosen (=,<>,

. >=, etc. a new tuple is generated. This new tuple is obtained

from the concatenation of the tuples from both relations.

Figure lO represents the conceptual steps involved in obtaining

the join of two relations,

e - 130

3.4. Relations Maintenance

3.4.1. Insert

This commands allows the user to insert new tuples to an

already created relation. The relation is loaded into the two

workspace~ at the same time. The insertion takes place in

workspace # 2. The tuple is inserted at the next available

space on the workspace. Then the whole relation witb the

insertion is shown to the user. The user has the alternative of

keeping this insertion or starting all over again. After user

approval the relation is sorted by the key and saved into the

diskette. Figure 11 shows the steps in this activity.

3.4.2. Delete

The delete command refers to tuple deletion. This is done

by loading the relation into the two workspaces. The user should

enter the qualification where the deletion should take place

(attribute name, relational operator, and attribute value). If

the user wants to delete one tuple, then the value should be

the one corresponding to the desired tuple. The other way to

delete more than one tuple would be to use the qualification

(attribute name, relational operator, and attribute name). In

e ~ 131

this case the attributes should be compatible.

The procedure does an exchange of the tuple attribute values

by the word "TUPLE DELETED. " After searching the whole

workspace # 2, the resulting modification is shown to the user,

with the word "tuple deleted" where ~eletion took place. The

user has the alternative of accepting or rejecting this result.

After accepting the resulted information, tuples without the

word "TUPLE DELETED" are put back into the relation file.

Figure 12 describes the steps involved in this command.

3.4.3. Update

Update of a tuple is done in the following way. The user

should enter the key value for the relation to be updated. This

is done by means of the qualification (attribute name,

relational operator, and key value). Then the system will

search for this tuple in workspace # 2. If the tuple is found,

then the system will show the whole relation content where the

old tuple exists. Then the user has the chance to update the

whole or sorne of the attribute values in,this tuple. Following

the update of the tuple, the system again shows the relation ·

with the tuple updated. The user has the chance to approve this

modification or reject it. If the user accepts the changes

made, the relation will be saved. Figure 13 describes the steps

for this command.

e - 132

ASK í'or fírst Helatíon name
LOAD Relation into Workspace 1
LOAD Data Definítíon into Data Def. array 1
PRINT Data Definítion for this relation
ASK for second Relation name
LOAD Relation into Workspace 2
LOAD Data Definition into Data Def. array 2
PRINT Data Definition for this relation
ASK for first attribute name from First Relation,

relational operator, and
second attribute name from Second Relation

WHILE not end of First Relation DO
Begin

WHILE not end of Second Relation DO
Begin

GET attribute values from First Relation and Second
Relation

IF values match desired qualification THEN
Begin

COIWAt1ENA'I1E to 'ruple from first Relation all
attribute values of tuple from second Helation

PRINT result of concatenation
End

End
End

Figure lO,. Join operation steps.

e - 133

LLAU l{el.ation r'or insertion into Workspaces
LuAO Data Definition
WEILB not end insertion of tu:ples DO
Begin

PROMPT linea for insertion
ADD new tuple at the end of Workspace 2

t:nd
SORT tuples in workspace 2 by the key
PRINT Relation with new tuples
IF affirmative answer to kéep tuples THEN
Begin

UPDAT1~ number of tuples in Relations File
UPDATE old Relation file in diskette

ELSE no insertion made

l &

Figure 11. Steps involved in the insertion of tuples.

ASK for Relation Name
LOAD Relation into Workspaces 1 & 2
LOAD Data Definition into array 1
ASK for type of qualification to access tuple(s)
WHILB not end of relation DO
Begin

IF tuple matches qualification TH~N
Begin

E8PLACE tuple for 11 TUPLE DBLETED" string
;c.;nd

I'RINT content Workspace 2
IF desired deletion TqEN
Begin

UIDAJ:B number of tuples in Helations File
UPDATE old Relation file in diskette

t.:nd

ELSE no deletion made

Figure 12. Steps to delrate tu:ple(s) from a relation.

e - 134

2

ASK for Relation name
LOAD Relation into Workspaces
LOAD Data Definition
Begin

ASK for the tuple Key value
SEARCH for desired tuple
SHOW Old tuple
ENTER new tuple

l & 2

REPLACE in workspace 2 old tuple for new one
PRINT Works:pace 2
IF desired update THEN
Begin

TRANS:FER Workspace
End
ELSE no update made

.2nd

2 content to Relation ·File

Figure 13. SterJs to update a tuple from a relation.

e - 135

4. ERROR CHECKING MECHANISMS

The error checking mec11anisms are present at different

levels in the interaction with the system. The levels are the

Data Base, the Query, the Relation, and the Interaction level.

In case of sorne types of errors, the system responds to the

user with an appropiate message. The interaction level error

checking mechanisms appear in all levels and are mainly

concerned with the inputs to commands and keywords to the

system.

4.1. Data Base Level

The mechanisms provided at this level are put in effect when

the user wants to add a new relation to the Data Base. The

system will check for redundancy on the relation names. If the

new relation name already exists in the data base, then the

creation of the relation will be denied.

4.2. Relation Level

The error mechanisms at this level are associated with the

common operations in the Data Base (tuple insertion, update,

e - 136

and deletion). When the user wants to insert a new tuple, one

of the first error checking mechanisms is the present number of

tuples in the relation. If the tuple that is supposed to be

inserted goes over the maximurn number of tuples allowed, the

insertion will be denied.

The other error checking mechanism appears when the actual

insertion of attribute values for the new tuple is being

periormed. If the user inputs an attribute value that does not

match the corresponding attribute domain, then the insertion is

denied. The other important error checking mechanism is done to

preserve the Relation integrity. This is the checking for

redundant keys. If the use:r ini=>uts a tuple with a key that

already exists in the relation, the insertion is denied.

4.3. Query Level

The error checking mechanisms at this level correspond to

the compatibility among attribute domains and vá.lues when the

queries are constructed. The other error checking is using the

information of the attribute value ranges. This is done when

the value input for certain attribute it is not within the

range that the attribute has in the data definition.

The attribute compatibility is done when the query uses two

attributes, i.e. join or selectíon. If the attríbutes are not

compatible in domain and length. the query is denied. The other

e - 137

use of compatibility is made when a query is constructed where

an attribute and a value of this attribute is placed in the

query, i.e. restriction. If the value does not meet the domain

and length compatibility with the attribute, the query is

denied.

4.4. Interaction Level

These type of error checking mechanisms are present at the

different levels of the system. There .is an error checking when

the user inputs the wrong attribute name and when he/she inputs

a wrong relation name. When this happens, the system will give

the user a chance to try the names again.

The other general error checking is done when certain

answers are expected frorn the u ser, for exarnple conrrnands

letters or Yes/No answers. The last error rnechanj_sm to rnention

is done at the query level; when relational operators

(=,<=,<>,etc) are expected, then the system will give several

chances to enter a correct relational operator.

5. SYSTEM LIMITATIONS

Limitations on the systems are caused by hardware and design

objectives considerations. The limitations caused by the

e - 138

hardware are those related to the size of workspaces in rnain

rnernory. This irnplies that srnall relations can be brought to

mernory. in this case with no more than lO tuples. The other

important factor is the size of the program itself. about 1,700

lines: so there is not much space left in memory for the

workspaces.

The design objectives were the development of an educational

type of system that could help students studying data base

management systems. The programming language used for the

implernentation of the Mini DBMSl was UCSD PAScAL·. The

implementataion is based on the programming language facilities

(data structures, built-in functions,etc) to simulate a

relational data base activity. The important point was

implementation of most of the relational operations. The amount

of relations or tuples in them was not that important because

of the type of environment for which the system was designed.

The other consideration was the response time of the system to

the guery part or exercise of the re.lational operations. The

system could be implemented using the diskette space for

working areas, but this would lead to slower response time as a

result of too much input/output activity.

The particular limitatio.ns of the system are:

* Rela.tions cannot be, more than lO tuples each.

e - 139

'' Total nurnber of relations alloHed in the Data Base is 5.

" 'I'he length of each tuple cannot be more than 50 characters.

* Total number of attributes per r~lation is 5,

* The data types available for domain definition are strings

and positive integers.

* Because of the size of the CRT (80 Characters) \vhen a two­

relations operation is performed. like ,Join or Cross Product.

and the sum of the tuple sizes lS more than 80. then the resul-t

in the last column of the CRT will be confusing. This will

happen if the user is running the system in the TERAK machine;

however, this will not happen if a bigger CRT or a hardcopy

terminal is available.

6. CONCLUSION

This software package has been used by students in the

CS482 (Spring 1980) course. They were the ones that really

tested the system and made suggestions for further development,

discovering sorne omissions that the program had. The students

were asked to evaluate the system and give their ideas about it

as an educational tool in the area of Relational Data Bases.

The feedback obtained from the students "'Jas very interesting

for the refinement of the program. Many of them found the

e - 140

system helpful to understand the data base concept and exercise

sorne of the operations in a data base, even though the

relations were small.

This project has given me a very good exposure to the

development of a considerable sized piece of software. This has

been the result of almost a year of work, from the design of

the system to the implementation and testing.

Expansions of the system can be made if a bigger minicomputer is

available. This will result in bigger workspaces so that larger

relations can be handled. On the other hand, if there is

interest in expanding the system for real applications, then

the use of bigger disks may be the way to go. Por this kind of

approach the basic procedures and functions dev&loped in this

program can be used. Of course, one has to consider the

modification of the data structures, but the procedures for the

realization of the relational operations and other utility

functions can be used without modifying too much.

The other further development would be the use of this system

with a CAI (Computer Aided Instruction) program in the Data

Base are a. The DBMS.l system can be used as a support media for

the examples of relational operations and common operations in

data base systems.

e - 141

BIBLIOGRAPHY

* Astrahan M.M. ,Blasgen M.W., et al., "SYSTEM R: Relatíonal

Approach to Database Management", ACM Transactíons on Database

Systems, Vol l, #2 June 1976.

* Banerjee J. & Hsiao D.K., "Performance Study of a Database

Machine in Supporting Relational Databases", Department of

Computer Science, Ohio State University, 1978.

* Bernstein P.A., "Synthesizing Third Normal Form Relations from

Functional Dependencies", ACM Transactions on Database

Systems , Vol 1, #4, December 1976.

* Burkhard M., "MINISEQUEL: Relational Data Management System",

from "Database:Improving Usability and Responsiveness", Editor

B. Shneiderman, Academic Press, 1978.

" Codd E. F. , " A Relational Model of Data for Large Shared Data

Banks", Communications of AC:M 13, June 1970.

-. Chamber lin D. D. , Astrahan M. M. , et al, "SEQUEL 2: A Unified

Approach to Data Definition, Manipulation and Control", IBM

Journal of Resesearch and Development, November 1976.

* Gagle M. ,Koehler G. & Whinston A., " Data Base Systems and

Micro- Computers: an overview", Krannert Graduate School of

Management, Purdue University, August 1979.

* Institute for Information Systems, "UCSD Pascal Release I.4

Manual", Universíty of California at San Diego, January 1978.

e - 142

* Kroenke D., "Database Processing", SRA Inc., 1977.

*Martín James,"Computer Data·Base Organization", Prentice

Hall 1975.

* Schmidt J.W.," Sorne High Level Language Constructs for Data of

Type Relation", ACM Trans D.B.,Vol 2, #3, September 1977.

* Tsichritzis D. & Lochovsky F.," Data Base Management Systems"

Academic Press 1977.

x· Wirth N. & Jensen K. , "PASCAL: U ser Manual & Report", Springer­

Verlag, 1974.

e - 143

